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Theoretical “t-z” Curves for Piles in Radially Inhomogeneous Soil
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Abstract: Accurate estimates of pile settlement are key for efficient design of axially loaded piles. 
Calculations of pile settlement can be simplified using one-dimensional “t-z” curves describing pile 
settlement at a certain depth as a function of side friction. In the realm of this simplified framework, 
theoretical “t-z” curves can be derived by substituting an attenuation function describing the variation of 
shear stress with distance from the pile, into a soil constitutive model relating shear strain to shear stress, 
then integrating with respect to distance to get the settlement at the pile circumference due to an applied 
shear stress. A handful of analytical “t-z” curves are available in the literature using the concentric cyl-
inder model to define an attenuation function; these include solutions for linear-elastic, power-law and 
hyperbolic constitutive models. However, radially homogeneous soil has often been assumed, ignoring 
the effect of the pile installation resulting in unconservative calculations of pile settlement. This paper 
considers the installation of the pile, resulting in a radially variable shear modulus distribution in the 
surrounding soil. A radial inhomogeneity correction factor has been developed for selected constitutive 
models based on two simplified functions for the soil inhomogeneity, which can be applied to the pre-
viously derived “t-z” curves produced assuming radially homogeneous soil. The performance of this 
simplified method is investigated.
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between the shear stress at the pile/soil interface and settle-
ment experienced in an axially loaded pile at a specific depth. 
By discretising the pile and selecting a “t-z” curve for each 
section, a simple one-dimensional numerical analysis can be 
employed to calculate the settlement at the head of a pile due 
to an applied load.

While empirical “t-z” curves are available (e.g. Coyle 
and Reese, 1966; Vijayvergiya, 1977), they are limited to 
specific test configuration and are difficult to generalise to all 
pile dimensions, materials and installation methods as well as 
different site conditions. As an alternative, theoretical “t-z” 
curves can be derived analytically by substituting a soil shear 
stress attenuation function, τ(r), describing the radial attenu-
ation of shear stress, into the flexibility form of a soil consti-
tutive relationship, γ(τ) (Kraft et al., 1981; Anoyatis, 2009). 
The result, a function of strain in terms of radial distance, 
is integrated in the radial direction producing an Equation 
for the settlement experienced at the pile/soil interface due 
to the applied shear stress. This method was employed with 
the concentric cylinder model for radial attenuation of shear 
stress by Cooke (1974), Randolph and Wroth (1978) and 
Baguelin and Frank (1979) to derive a simple “t-z” relation-
ship for piles embedded in linear-elastic soil. This solution 
has been extended to power-law (Vardanega et al., 2012) and 
hyperbolic (Kraft et al., 1981) constitutive relations for radi-
ally homogeneous soil.

Pile installation causes significant stress build-up in the 
surrounding soil, this results in reductions of soil strength 
and stiffness that are larger closer to the pile (O’Neill, 2001). 
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Introduction
Accurate estimation of pile settlement usually requires com-
plex three-dimensional analysis, such as boundary element 
method solutions (e.g. Poulos and Davis, 1968; Butterfield 
and Banerjee, 1971; Poulos and Davis, 1980), finite element 
method solutions (e.g. Syngros, 2004, Ottaviani, 1975) and 
rigorous analytical solutions (Mylonakis, 2001, Anoyatis 
et al., 2019, Anoyatis and Mylonakis, 2020). However, even 
for the simplest case of a pile embedded in a homogeneous, 
linear-elastic half-space, they require complex numerical 
software. Simplified Winkler solutions are available (e.g. 
Mylonakis, 1995; Mylonakis and Gazetas, 1998; Guo, 2012; 
Scott, 1981 and Crispin et al., 2018) however these are lim-
ited to linear-elastic or linear-elastic, perfectly-plastic soil 
behaviour. Pile settlement calculations can instead be sim-
plified using one-dimensional “t-z” curves (Seed and Reese, 
1957; Coyle and Reese, 1966) that describe the relationship 
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Experimental results using Spectral Analysis of Surface Waves 
(SASW) techniques were reported by Kalinski and Stokoe 
(1998) and Kalinski et al. (2001) which measured the variation 
of soil shear modulus with distance from a large open borehole 
in clay, confirming this behaviour. Therefore, in order to accu-
rately model the installed pile response, the radial inhomoge-
neity of the surrounding soil must be considered. Kraft et al. 
(1981) modelled the effect of pile installation by utilising a lin-
ear shear modulus variation with distance from the pile. This 
was employed to derive an equivalent shear modulus, Gave, for 
linear-elastic soil that can be substituted into the “t-z” curves for 
radially homogeneous soil to account for radial inhomogeneity.

Kraft et al. (1981) made two assumptions in the deriva-
tion of Gave: the radial variation of shear modulus can be mod-
elled with a simple linear function and an equivalent shear 
modulus can be selected based on a linear-elastic constitutive 
model, both with minimal loss of accuracy. This paper de-
rives an inhomogeneity correction factor, similar to Gave, for 
linear-elastic and non-linear constitutive models based on a 
radial variation of shear modulus described using linear and 
power-law functions. These are used to investigate the validi-
ty of the assumptions made by Kraft et al. (1981).

Problem Definition
Figure 1 shows the deformation of a horizontal slice of soil 
due to an axial load on a circular pile of diameter, d. The dis-
placement at the pile-soil interface, u0, can be calculated by 
integrating the shear strain with respect to the radial distance 
from the pile, r. Assuming the radial deformations are negli-
gible, this leads to Equation 1 (Randolph and Wroth, 1978):

u r dr
d

0
2

= ( )∫ γ
∞

 
/

� (1)

Two functions are required to refine the strain Equation: the 
attenuation function, τ(r), to describe the attenuation of shear 
stress with radial distance from the pile and a constitutive re-
lation, γ(τ), to describe stress-strain behaviour within the soil.

The attenuation function can be obtained from the con-
centric cylinder model employed by Cooke (1974), Randolph 
and Wroth (1978) and Baguelin and Frank (1979). The soil is 

idealised as a series of concentric cylinders, the stresses on a 
small section of which is shown in Figure 2. Considering the 
vertical equilibrium of this soil element yields Equation 2:

∂
∂

( ) + ∂
∂

=
r

r r
z

zτ
σ

0 � (2)

While rigorous solutions are available for this Equation 
(Mylonakis, 2001), a simplified solution can be obtained 
by assuming the variation with depth of the vertical normal 
stress, σz, is negligible (Randolph and Wroth, 1978; Scott, 
1981). The second term is therefore ignored, and the first 
term integrated to give Equation 3 which describes the shear 
stress, τ, as a function of distance from the pile, r.

τ τr d
r

( ) = ⎛
⎝
⎜

⎞
⎠
⎟0 2 � (3)

where τ0 is the shear stress at the pile/soil interface. 
The constitutive relation must be in the flexibility form 

that gives shear strain, γ, in terms of the corresponding shear 
stress, τ. As a result of this, it is a requirement that a consti-
tutive relationship in the form of τ(γ) must be analytically 
invertible. The simplest constitutive relationship is the linear-
elastic stress-strain model:

γ
τ

=
G � (4)

where G is the soil shear modulus.
Substituting Equation 3 into this relationship yields the 

shear strain as a function of distance from the pile, γ(r). If 
this were inputted directly into Equation 1, infinite settlement 
would be predicted because the predicted settlement diverges 
as the radius from the pile considered increases. Instead, an 
empirical radius, rm, is employed at which the settlement is as-
sumed to be negligible. This results in Equation 5 (Randolph 
and Wroth, 1978, Fleming et al., 2009):

u
d G r

dr
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d
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τ τ
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Randolph and Wroth (1978) assumed rm to be proportional 
to the length of the pile, l, and (1-v), where v is the Poisson’s 
ratio of the soil. This has been written in general form by 
Mylonakis and Gazetas (1998), shown in Equation 6. The 
magnitude of settlement is approximately zero at 26 pile di-
ameters, giving a suitable approximation of the product of 
the empirical constants, χ1 and χ2, to be about 2.5 for homo-
geneous, elastic half-space conditions (Randolph and Wroth, 
1978, Mylonakis and Gazetas, 1998).

r l vm ≈ −( )χ χ1 2 1 � (6)

Equation 5 describes a linear-elastic “t-z” curve, this remains 
valid until slip occurs at the pile-soil interface. Figure 3(a) 
shows the full linear-elastic, perfectly-plastic constitutive 
model for London Clay where the shear stress is capped at 
a failure stress, τmax=cu, the undrained shear strength. G was 
assumed to equal the initial shear modulus at small strain, G0. 

Figure 1. Deformation of a horizontal slice of soil due to an axial load 
on a pile
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From a database of high quality triaxial tests in London Clay, 
Vardanega and Bolton (2011a) found that G0/cu in London 
Clay is approximately 320.

Figure 3(b) shows the “t-z” curve for linear-elastic soil 
using Equation 5 with G=G0 and τmax=cu. This is plotted up to 

τmax, however, the strength of the pile/soil interface is normal-
ly less than the soil shear strength. In this case the “t-z” curve 
may be capped at a lower shear stress than τmax. Skempton 
(1959) derived an empirical adhesion factor, α, on undrained 
shear strength, cu, for this purpose which was based on a set 
of pile load tests in London Clay. 

Radially Inhomogeneous Soil
The solution in Equation 5 assumes the soil shear modulus, 
G, is constant with distance from the pile; however, pile in-
stallation results in a softened zone being developed close 
to the pile. Kraft et al. (1981) suggests this can be modelled 
using a linear variation of shear modulus, G(r), with distance 
from the pile/soil interface to the radius of influence of pile 
installation, ri, (Figure 4(b)), which can be written as Equa-
tion 7 (Anoyatis, 2009).

G r G
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G
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, r rri � (7a)

G r Gu i( ) = >, r r � (7b)

where Gd is the disturbed shear modulus at the pile-soil inter-
face and Gu undisturbed shear modulus prior to installation 
of the pile.

Employing a finite element method, Randolph et al. 
(1979) predicted that once consolidation of the soil is com-
plete, a radius of around 10 pile diameters has altered stress-
es due to pile driving. Kraft et al. (1981) fitted Equation 7 
through the data produced by Randolph et al. (1979) produc-
ing a value of radius of influence of pile installation, ri, of 
approximately 7 pile diameters and a value for the reduction 
in the shear modulus at the pile/soil interface (Gd/Gu) of ap-
proximately 0.3.

The effects of the pile installation have been measured 
experimentally at a site at the University of Houston, Tex-
as, by obtaining data using the Spectral Analysis of Surface 
Waves (SASW) at varying depths within a 3m (9.5ft) deep 
and 1m (3.5ft) diameter borehole, shown in Figure 4(a) 
(Kalinski, 1998). The test results are shown in Figure 4(b) 

Figure 2. Derivation of the concentric cylinder model attenuation function

Figure 3. (a) London Clay modelled with different constitutive models 
(b) “t-z” curves for homogeneous soil, rm/d = 26 
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(O’Neill, 2001) and indicate the radius of influence of pile 
installation, ri, is approximately 1 to 2 pile diameters away 
from the pile/soil interface and results in a disturbed shear 
modulus, at the pile/soil interface, Gd, of approximately half 
of the undisturbed value of shear modulus, Gu. Based on these 
results, O’Neill (2001) determined a “probable variation” of 
shear modulus with distance from the pile. Fitting Equation 
7 to this probable variation gives ri /d=1.75 and Gd/Gu=0.53, 
this is shown in Figure 4(b).

These results are empirical and are limited in application 
to bored piles in the over-consolidated (OCR>6) stiff clay at 
the Houston site (Kalinski et al., 2001). The authors are not 
aware of any high-quality testing in other deposits or for other 
installation methods such as driven piles. However, the numer-
ical results from Randolph et al. (1979) are for driven piles in 
Boston Blue Clay at a variety of OCR values. These indicate 
that driven piles have a much larger radius of influence, which 
is expected from the larger disturbance involved in their in-
stallation compared to bored piles. Additional numerical anal-
ysis and experimental results are required to allow the radial 
inhomogeneity parameters to be estimated with confidence in 
different soils and for different installation methods.

Equation 7 can be substituted into the constitutive re-
lation prior to the attenuation function in order to generate 
a “t-z” curve for radially inhomogeneous soil. In this case, 
Equation 1 can be rearranged to Equation 8. 

u r r dr r r dri
d

r
i

r

ri

i

m

0
2

= <( ) + ≥( )∫ ∫γ γ
/ � (8)

Employing the linear-elastic constitutive relation in Equation 
4 and the attenuation function in Equation 3, the pile dis-
placement for an applied shear stress is given by Equation 9.
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Comparing this to Equation 5, replacing G with Gu, Equa-
tion 9 can be rearranged in the form:
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where ψ is a radial inhomogeneity correction factor given by 
Equation 11. This is equivalent to Gu/Gave in the notation of 
Kraft et al. (1981).
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Non-Linear Soil Behaviour
Kraft et al. (1981) suggest that a radial inhomogeneity cor-
rection factor developed using a linear-elastic soil is suitable 
to model installation effects and that general nonlinear effects 
are more important to consider than the effect of soil nonlin-
earity on the installation effect. Two simplified nonlinear soil 
models are employed here to investigate this assumption, a 
power law model (Vardanega et al., 2012) and a hyperbolic 
model (Konder, 1963).

Vardanega et al. (2012) used the power-law constitutive 
relationship in Equation 12 to develop a “t-z” curve incorpo-
rating non-linear soil behaviour.

τ γ
γcu

b

=
⎛

⎝
⎜

⎞

⎠
⎟

1
2 50

� (12)

where γ50 is the shear strain during the mobilisation of half the 
undrained shear strength, cu is the undrained shear strength, τ 
is the mobilised shear stress and b is a soil nonlinearity expo-
nent. This constitutive model, calibrated for the stress range 
shown by Vardanega and Bolton (2011b) using a database of 
soil tests in clays and silts, is shown in Figure 3(a). Vardanega 
and Bolton (2011a) found the average γ50 for London Clay is 

Figure 4. (a) Borehole dimensions and SASW testing locations (data 
from Kalinski 1998) (b) Variation of shear modulus with distance 
from the pile/soil interface (data from O’Neill, 2001, measured data 
attributed to Kalinksi and Stokoe, 1998)

vol14no1Bateman210.indd   4 10/10/20   12:17 PM



© Deep Foundations Institute� DF I  JOURNAL  |  VOL .  14  |  ISSUE  1  |  5

Bateman, Crispin | Theoretical “t-z” Curves for Piles in Radially Inhomogeneous Soil

0.007. Vardanega and Bolton (2011b) derived a mean value 
of b=0.60 with standard deviation 0.15. Rearranging Equa-
tion 12 into the flexibility form with γ as the subject and sub-
stituting in Equation 3, the power-law relationship defining 
shear strain as a function of radial distance is obtained. This 
can be integrated using Equation 1, noting rm does not need 
to be applied. This results in Equation 13 (Vardanega et al., 
2012, Vardanega, 2015, Crispin et al., 2019) which is shown 
in Figure 3(b).
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2 1
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γ τ
τ � (13)

Similarly to the linear-elastic constitutive model, a radial in-
homogeneity correction factor, ψ, can be defined to allow pile 
installation effects to be considered, shown in Equation 14.
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The inhomogeneity correction factor can then be calculated 
rigorously by substituting Equation 7 into the constitutive 
model in Equation 12, producing Equation 15:
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where g( ) is Gauss’s Hypergeometric Function (Abramowitz 
and Stegun, 1972) with the following arguments:
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Equation 15b is nontrivial to compute. Therefore, the recom-
mendations by Kraft et al. (1981) to employ an inhomoge-
neity correction factor based on a linear-elastic constitutive 
model are appealing. This is investigated in Figure 5 where 
the “t-z” curves developed using Equation 14 and three differ-
ent assumptions for ψ are compared: Equation 15 developed 
for non-linear soil, Equation 11 developed for linear-elastic 
soil and ψ=1 representing neglecting radial inhomogeneity 
completely and using the undisturbed soil parameters.

Figure 5(a) illustrates, that for b=0.60 the percentage 
difference between the two “t-z” curves is approximately 
1%. Figure 5(b) shows this difference for a range of b val-
ues. Within the range ±1σ from the average b determined by 
Vardanega and Bolton (2011b) (0.45 < b < 0.75) the error 
is below 10%. This can be compared with the error when 
ψ=1, which is 23% at b=0.6, but increases to 31% within the 

range ±1σ. This indicates that radial inhomogeneity can be 
adequately accounted for using the simplified result in Equa-
tion 11 instead of Equation 15.

Kraft et al. (1981) developed a “t-z” curve using a hyper-
bolic constitutive model in the form of Equation 16:

G G
R

sec
f

max
0 1

�
(16)

where G0 is the initial shear modulus at small strain, Gsec is 
the secant shear modulus and Rf is a fitting constant. Different 
forms of this hyperbolic relationship have previously been 
analysed by Konder (1963) as a suitable stress-strain rela-
tionship. A similar hyperbolic model can be written in flexi-
bility form as Equation 17. This is plotted in Figure 3(a).

G G

max
0

0
� (17)

Figure 5. (a) Power-law “t-z” curve (Equation 14), γ50 = 7 × 10-3, b = 0.6 
(b) Percentage difference between the “t-z” curves for varying soil 
non-linearity exponent values, Gd/Gu = 0.53, ri /d = 1.75, rm/d = 3.86
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The “t-z” curve Equation using the concentric cylinder model 
(Equation 3) for radially homogeneous soil is shown in Equa-
tion 18 (Kraft et al., 1981) and plotted for radially homogene-
ous soil in Figure 3(b).

u
d G
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r d
d d

max m

max

0 0

0

0

02
2

� (18)

As before, a radial inhomogeneity correction factor, ψ, can 
be defined to allow pile installation effects to be considered, 
shown in Equation 19.
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The inhomogeneous correction factor calculated for the hy-
perbolic constitutive model is given by Equation 20.
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Figure 6(a) illustrates the difference between the “t-z” curves 
produced from the linear-elastic constitutive model ψ, the 
hyperbolic constitutive model ψ and when ψ=1. Figure 6(b) 
quantifies this difference between the “t-z” curves as a result 
of the shear stress at the pile/soil interface. The percentage er-
ror in the “t-z” curve increases with the shear stress at the pile/
soil interface, up to a (τ0/τmax) value of 0.85, the “t-z” curve 
using ψ from Equation 11 is within 10% of the curve using ψ 
from Equation 20. This is comparable to errors greater than 
22% for ψ=1 when installation effects aren’t considered. This 
is in agreement with the results shown in Figure 5, indicating 
the simplified ψ from Equation 11 is suitable for predicting 
response in radially inhomogeneous soil.

Non-Linear Radial Inhomogeneity
Due to the uncertainty in the actual radial variation in shear 
modulus due to pile installation, Kraft et al. (1981) as-
sumed that the linear function in Equation 7 is adequate. 
The high-quality experimental data reported in Kalinski and 
Stokoe (1998) and Kalinski et al. (2001) allows this assump-
tion to be investigated. An improved Equation to fit the vari-
ation in shear modulus with distance from the pile utilising a 
power-law function is shown in Equation 21:
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G r G r ru i( ) = >, � (21b)

where a is a radial inhomogeneity exponent. Setting a=1, 
Equation 21 simplifies to Equation 7. Fitting Equation 21 to 
the probable variation provided in O’Neill (2001) gives a val-
ue of a=0.8 and ri/d=1.91.

An inhomogeneity correction factor, defined in Equation 
10, can also be calculated for the linear-elastic constitutive 
model “t-z” curve and the power-law radial shear modulus 
variation, given by Equation 22. This cannot be analytically 
integrated; however, it can be calculated numerically.

d
r d

u

d

u
i

a

i

r
G
G

G
G

r d

r d2

1 1 2

2

1

2

dr ln r
r

ln r
d

m

i

m �
(22)

Figure 7 is used to validate the assumption in Kraft et al. 
(1981) by comparing the “t-z” curves produced from assum-

Figure 6. (a) Hyperbolic “t-z” curve (Equation 19), G0/τmax = 320  
(b) Percentage difference between the “t-z” curves for varying shear 
stress at the pile/soil interface, Gd/Gu = 0.53, ri/d = 1.75, rm/d = 3.86
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ing ψ values from: Equation 22 developed for a non-linear 
shear modulus variation, Equation 11 developed for linear-
elastic soil and ψ=1 for radially homogeneous soil with the 
undisturbed shear modulus. Figure 7(a) shows that the “t-z” 
curve produced using ψ from Equation 11 overestimates set-
tlement by approximately 2%. Ignoring pile installation ef-
fects and setting ψ=1 gives an error of 20% for the test con-
figuration shown in Figure 4(a). The difference can be plotted 
against, ri/rm, which is shown in Figure 7(b). It is evident that 
the numerical integration required to calculate Equation 22 
can be replaced with the simplified solution in Equation 11 
without significant loss of accuracy.

Conclusion
Theoretical “t-z” curves can be derived by substituting an at-
tenuation function describing the variation of shear stress with 
distance from the pile, into a soil constitutive model relating 
shear strain to shear stress, then integrating with respect to 
distance to get the settlement at the pile circumference due to 
an applied shear stress. A radial inhomogeneity correction fac-
tor, ψ, that can be applied to a “t-z” curve has been introduced 

allowing pile installation effects to be modelled simply with 
only two radial inhomogeneity parameters required. Howev-
er, limited data is available to calibrate these parameters. The 
method has been demonstrated using SASW data from a large 
borehole at a site in Houston, TX (Kalinski and Stokoe, 1998; 
Kalinski et al., 2001), but the response in other soils and due 
to different installation methods requires further investigation.

ψ values were derived for the following cases:
•	 linear-elastic soil with a linear shear modulus variation 

with radial distance (Equation 11), matching previous 
work by Kraft et al. (1981);

•	 power-law (Equation 15) and hyperbolic (Equation 20) 
non-linear soil constitutive models with a linear shear 
modulus variation with radial distance;

•	 linear-elastic soil with a power-law shear modulus varia-
tion with radial distance (Equation 22), however this value 
must be approximated numerically.

The equivalent shear modulus calculated for the linear-elastic 
soil with the linear shear modulus variation (Equation 11) has 
been shown to be suitable for estimating the effects of the 
installation of the pile with minor error compared to the more 
rigorous solutions that are more complex to compute. 
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